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ABSTRACT

The prediction of drought onset and decay in the U.S. Corn Belt region (CBR) on seasonal-to-subseasonal

time scales has not been well studied. This study utilizes the subseasonal-to-seasonal prediction archive to

assess model errors in large-scale circulation patterns associated with agricultural drought transition periods,

targeting models used by the European Centre for Medium-Range Forecasts, National Centers for Envi-

ronmental Prediction, and Australian Bureau of Meteorology. An analysis of the seasonal cycle of bias for

geopotential anomalies at 200 hPa and net radiation at the top of the atmosphere in each model is presented

and used to subtract the long-term bias from each model. Model fields are decomposed into three spec-

tral bands—low frequency (periods . 100 days), intraseasonal (periods 20–100 days), and synoptic

(periods , 20 days)—to demonstrate each model’s ability to predict patterns associated with agricultural

drought transition periods in each band. Results demonstrate that ECMWF and NCEP struggle in predicting

the large-scale circulation patterns associated with 20-day agricultural drought and onset transitions, but are

more skillful in predicting the patterns associated with 60-day agricultural drought onset and decay events at

reforecast hour lead window 360–480 (F360–F480). BoMwas not skillful in predicting the circulation patterns

associated with either type of drought transition. Results also demonstrate that the errors associated with

these events are no worse than historical errors for the target study period.

1. Introduction

The prediction of drought onset and decay over the

U.S. Corn Belt region (CBR) on seasonal-to-subseasonal

time scales has not been well studied. Since drought in the

CBR is one of the most costly natural disasters (Wilhite

2000; Adonizio et al. 2012; Hoerling et al. 2014), accurate

prediction of the atmospheric phenomena that contribute

to transition periods toward or away from drought is crit-

ical to understanding and communicating the risks of

economic loss. Traditionally, assessments of the prediction

of drought over the CBR have focused on the seasonal

prediction (with leads of 1–6 months) of quantities such

as the standardized precipitation index (SPI) and soil

moisture (Quan et al. 2012; Mo and Lyon 2015; Luo and

Wood 2007). Recent studies have demonstrated skill in

predicting drought over the CBR (Quan et al. 2012; Mo

and Lyon 2015; Luo and Wood 2007), while others have

shown poor forecast performance (Wu and Kinter 2009;

Hoerling et al. 2014), highlighting that the prediction of

drought varies greatly from event to event. Overall, the

probability of detection of drought onset (using SPI as an

indicator) in the CBR for a multimodel seasonal forecast

ensemble is less than 45% (Yuan and Wood 2013). While

providing accurate seasonal forecasts of drought would

yield tremendous socioeconomic gains, doing so may be

beyond the limits of predictability (Lorenz 1963; Guo et al.

2011). On the other hand, gradually varying signals in the

climate systemmight provide some predictability (Mo and

Lyon 2015). As such, it is important to understand the

ability ofmodels to predict agricultural drought transitions

at shorter leads of 1–4 weeks.

Short- (,1 week) and medium-range (2–3 week)

precipitation forecast skill over the CBR have been as-

sessed in the literature (Li and Robertson 2015), and

many statistical postprocessing methods have been de-

veloped to improve such forecasts (Hamill et al. 2004,

2008; Scheuerer and Hamill 2015). However, a com-

prehensive evaluation of model performance during

drought transition periods at such lead times has not

been presented. Recent access to reforecast data
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initialized from near-real-time versions of numerical

weather models employed by 11 modeling centers, via

the subseasonal-to-seasonal prediction archive (S2S;

Vitart et al. 2016), allows for such an assessment.

Schiraldi and Roundy (2017) demonstrated that 20-

and 60-day agricultural drought transition onset and

decay events are forced primarily by intraseasonal at-

mospheric Rossby wave trains that occur in conjunction

with westward-propagating intraseasonal convection in

the Northern Hemisphere subtropics. Schiraldi and

Roundy (2017) further demonstrate a low-frequency

wave train that increases the likelihood of drought onset

or decay twofold. Understanding how well represented

these patterns are by numerical weather prediction may

yield a better understanding of the predictability of such

events. Rather than focusing solely on the skill of pre-

cipitation forecasts during such transition periods, this

study assesses the ability of models to predict correctly

the synoptic, intraseasonal, and low-frequency patterns

relevant to 20- and 60-day agricultural transitions over

the CBR.

2. Data

Reforecasts from the Australian Bureau of Meteo-

rology (BoM), European Centre for Medium-Range

Weather Forecasts (ECMWF), and National Centers

for Environmental Prediction (NCEP) are evaluated in

this study. As a result of the nature of the reforecast

release schedule of the S2S dataset (Vitart et al. 2016),

these are the only models that have sufficient data (in a

continuous set of reforecasts) at the time of this study.

The data are output on varying horizontal grids, with

varying initialization frequencies, ensemble sizes, re-

forecast periods, and lead ranges (Table 1). For each

model’s own reforecast period, 24-hourly ensemble

mean forecasts of geopotential height at 200 hPa

(Z200) and net radiation at the top of the atmosphere

(NRAD TOA) from reforecast hour 0000 (F0000) to

reforecast hour 1440 (F1440) initialized at 0000 UTC

are obtained.

a. ECMWF

To achieve a continuous reforecast of ECMWF,

reforecasts from different versions of the model are

utilized. Reforecasts from ECMWF initialized between

1 January and 31 December 2015 are used in this study,

yielding a reforecast period from 1 January 1995 through

31 December 2014. Dates initialized between 1 January

and 12 May 2015 use cycle 40r1, while reforecasts after

12May 2015 use cycle 41r1, both being different than the

operational model (cycle 41r2) at the time of this paper.

The main differences between cycle 40r1 and 41r1 are

that in 41r1, the reforecasts began to be initialized twice

weekly, the reforecast was extended out to 46 days, and

there was an upgrade to the resolution of the data as-

similation (ECMWF 2016). Since forecasts out to

46 days are not available for the entire period, only

forecasts out to 32 days are considered, on a 1.58 3 1.58
grid. Because of horizontal resolution upgrades im-

plemented in cycle 41r2 (ECMWF 2016), the systematic

bias and reforecast skill presented in this paper may not

be applicable to the current version of the model, but

can be used to benchmark cycle 41r2 and future versions

of the model.

b. BoM

The reforecast period obtained for BoM covers from

1 January 1981 through 31 December 2013. Reforecasts

are initialized every 5 days starting from 1 January, at

0000UTC, output onto an approximately 2.58 3 2.58 grid
and run with 32 ensemble members. Reforecasts out to

62 days are available, but for consistency with ECMWF,

only reforecasts out to 32 days are analyzed. The re-

forecasts are initialized from the operational model at

the time of this study (Vitart et al. 2016).

c. NCEP

The climate forecast system reforecast data from

NCEP are obtained from 1 January 1982 through

31 December 2014. Since the NCEP reforecast dataset

ends on 31 December 2010, the dataset was extended

TABLE 1. For each model, the time range (forecast lead time, in days), resolution, ensemble size, frequency of initialization, reforecast

period, and whether or not the model has ocean coupling and sea ice coupling is presented for reference. This study focuses on forecasts

verifying during May–August (1995–2013). Adapted from Vitart et al. (2016) to show only the models presented in this study.

Model

Time range

(days) Resolution

Ensemble

size

Frequency of

initialization

Reforecast

period

Ocean

coupling

Sea ice

coupling

BoM 0–62 ;28 3 28; L17 33 Twice weekly 1981–2013 Yes No

ECMWF 0–32 0.258 3 0.258 for days
0–10, 0.58 3 0.58
after day 10; L91

51 Twice weekly 1995–2015 Yes No

NCEP 0–44 ;18 3 18; L64 4 6 hourly 1981–2015 Yes Yes
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through 2014 using archived forecasts from operational

runs that are consistent with the reforecast model. Un-

like BoM and ECMWF, the CFS is deterministic (Saha

et al. 2014). A four-member ensemble is created using

overlapping lead windows from the 0000, 0600, 1200,

and 1800 UTC initialized forecasts. Data are output

onto a 2.58 3 2.58 grid, and run to exactly 45 days, al-

though forecasts only through 32 days are analyzed.

Previous literature has noted a change in the tropical

climatology of the initial conditions (CFSR) and sub-

sequent CFS reforecasts after 1999 (Saha et al. 2014).

Anomalies are created with respect to the outgoing

longwave radiation (OLR) dataset described in section 2d

and this shift in the data should not have a large impact on

the results presented.

d. About the reforecasts

While a longer time period of reforecasts is available

for NCEP and BoM compared to ECMWF, this study

focuses only on agricultural drought transition events

occurring in the common time period between all three

models: 1995–2013. This decreases the sample size of

CBR drought transition events to forty-nine 20-day

drought decay events, sixty 20-day drought onset

events, twenty-one 60-day drought decay events, and

twenty-five 60-day drought onset events. These events

remain reasonably scattered through the May–August

climatology, as discussed by Schiraldi and Roundy

(2017). The results presented are representative of the

full NCEP and BoM datasets.

Using a consistent climatology between all three

models introduces another caveat: that the models are

not initialized on the same days throughout that clima-

tology. As such, the model reforecasts were averaged to

six 120-h lead windows: F000–F120, F120–F240, F240–

F360, F360–F480, F480–F600, and F600–F720. Refor-

ecasts are analyzed if the transition event occurs at some

point during the target window. This leads to reforecasts

across modeling centers being slightly shifted in initial-

ization, but capturing the same events across lead win-

dows. At longer leads (.120 h), these slight shifts are

irrelevant. Only the ensemble mean is discussed for

each model.

e. Reanalysis data

Analyses at 0000 UTC from the European Centre for

Medium-Range Weather Forecasts interim reanalysis

(ERA-I; Berrisford et al. 2011) are used to verify the

5-day mean reforecasts for Z200. This approach may

give ECMWF a small advantage over the other models,

but it is likely to have little effect on longer-lead refor-

ecasts. The NRAD TOA reforecasts are verified using

the National Oceanic and Atmospheric Administration

OLR daily climate (Lee 2014). The OLR dataset is

available on a 1.08 3 1.08 grid from 1979 to the present.

As in Schiraldi and Roundy (2017), NCEP’s Unified

Gauge-Based Precipitation Dataset (UPD; Chen et al.

2008), which contains a 0.258 3 0.258 mesh of daily

(1200–1200 UTC) precipitation observations over a

59-yr base period (1 January 1948–31 December

2006) for the region bounded by 20.1258–49.8758N,

230.1258–304.8758E, is used to identify drought transi-

tion periods. The UPD have been extended through

the present, on a slightly shifted grid, and are updated

daily.

3. Methods

a. Identifying drought transition events

The primary focus of this study is to assess how well

the BoM, ECMWF, and NCEP models predict patterns

associated with agricultural drought transition periods

in the CBR during May–August. Following Schiraldi

and Roundy (2017), a CBR-based precipitation index is

created by averaging grid points over Illinois, Indiana,

Iowa, Minnesota, Missouri, Nebraska, Ohio, and South

Dakota. Precipitation anomalies are created for a for-

ward- and a backward-looking n-day accumulated pre-

cipitation time series (i.e., on 1 June there is a time series

summing 1 June 1 n day and 1 June 2 n day), by first

applying a power transform to each forward- and

backward-looking time series to make them approxi-

mately normal, then removing the first five seasonal

harmonics (1979–2014) from each time series, and fi-

nally standardizing the resulting anomalies by the stan-

dard deviation of daily data (Schiraldi and Roundy

2017). As described by Schiraldi and Roundy (2017),

drought decay is defined as the previous n-day accu-

mulated precipitation anomalies #20.5 standard de-

viation followed by at least n days of accumulated

precipitation anomalies $0.5 standard deviations,

where drought onset is the opposite scenario. This study

focuses on n day 5 10 and 30, equating to transitions

occurring over 20 and 60 days, where n day5 10 will be

referred to as 20-day drought onset or decay transition

and n day5 30 is referred to as 60-day drought onset or

decay transition. Schiraldi and Roundy (2017) also an-

alyzed transitions of other lengths and found that they

tended to cluster about these two sets.

b. Computing reforecast anomalies

The Z200 reforecast anomalies are created by

subtracting a 35-yr climatology (1979–2014) calculated

from 0000 UTC analyses from the ERA-I, to be con-

sistent with the reforecasts verifying only at 0000 UTC.

This climatology is calculated by regressing the Z200
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analyses onto the first five seasonal harmonics. The

results have been tested using between four and six

harmonics, with no significant impact reported be-

tween five and six. Similarly, NRAD TOA forecast

anomalies are calculated from the OLR dataset. The

0000 UTC anomalies are computed from daily mean

data. Since reforecasts are only reported at 0000 UTC,

variations in the diurnal cycle that are in the daily

mean OLR dataset are likely not well represented in

the reforecasts. Any bias that arises from this in-

consistency is calculated and subtracted prior to the

analysis described in section 3d.

c. Filtering the reforecast

The main goal of this study is to analyze how well

the low-frequency (periods .100 days), intraseasonal

(periods .20 and ,100 days), and synoptic (periods

,20 days) circulation patterns associated with drought

onset and decay (Schiraldi and Roundy 2017) are pre-

dicted by S2S model reforecasts. To do so, Z200 and

NRAD TOA must be linearly decomposed into the

low-frequency, intraseasonal, and synoptic temporal

bands. Since the reforecasts are not initialized at a

consistent frequency, a traditional Lanczos filter cannot

be used. Instead, Fourier regression is utilized to filter

each 5-day-mean lead window. A matrix x is created

with n sine and cosine waves harmonic to the total

length of time the dataset spans, including only the

periods corresponding to the filter band of interest,

ordered in the columns of x with time t increasing down

the rows. For each lead window, a second matrix Y is

filled with the Z200 or NRAD TOA anomalies, with

t increasing down the rows. Ordinary least squares re-

gression is then performed as

c5 inv(xT � x) � xT � Y (1)

to extract the linear relationship between the harmonics

associated with the filtered periods x and the reforecast

data Y. Since Y is not linearly spaced in time, only the

rows associated with the Julian days of year of Y are

taken from x. The filtered fields F are reconstructed as

F5 x � c , (2)

retaining only the time steps included in Y. This method

is used to calculate the low-frequency and intraseasonal

bands, while the synoptic filtered data are calculated by

subtracting the sum of the low-frequency and intra-

seasonal anomaly from the total anomaly. A caveat of

this approach is that Fourier regression filtering is sub-

ject to Gibbs ringing at the edges of the filter band, but

the breadth of the bands reduces such impacts.

d. Calculating the long-term bias and bias-corrected
reforecast

Fourier regression is also used to calculate the sea-

sonal cycle of the systematic bias in Z200 and NRAD

TOA. Bias is calculated by subtracting the 5-day-mean

reforecasts from their associated 5-day-mean verifica-

tions at each grid point. Then, the first five harmonics of

the seasonal cycle are fit to the bias time series at each

grid point. The results are not sensitive to additional

harmonics beyond five. The seasonal cycle of bias, based

on the initialized Julian day of year and reforecast lead

window the total field, is used to create a bias-corrected

reforecast. This approach removes the long-term sys-

tematic bias but retains any short-term regime-dependent

biases. The seasonal cycle of bias is calculated for the

full reforecast period available for each model, not a

unified time period.

e. Skill metrics

Both error and anomaly correlation coefficient

(ACC) are used to measure the skill of the reforecasts

for each modeling center. Error is defined as

error
i,l,x,y

5 f
i,l,x,y

2 y
i,l,x,y

, (3)

where f is the reforecast, y is the verification, i is the

initialization, l is the lead window, x is the longitude

index, and y is the latitude index. The anomaly corre-

lation coefficient is defined as the correlation between

the reforecast and verification, and is computed as

ACC
i,l
5

�(Z
f (i,l)

2 Z
f (i,l)

)(Z
y(i,l)

2 Z
y(i,l)

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�(Z

f (i,l)
2 Z

f (i,l)
)2�(Z

y(i,l)
2 Z

y(i,l)
)2

q , (4)

where Zf is the reforecast anomaly and Zy is the verifi-

cation anomaly, while the overbar denotes the area

mean. Gridded data are weighted by the square root of

the cosine of latitude before calculating the ACC.

f. Statistical significance and performance benchmark

A Monte Carlo test is applied to the composite data

to test for statistically significant reforecast anomalies

and to provide a benchmark against historical perfor-

mance in the reforecast dataset. Events from the pop-

ulation of each reforecast composite are drawn at

random 1000 times with replacement to generate 1000

new reforecast composites. The data from the 1000 new

reforecast composites are then tested for statistically

different signals from zero at the 95th percentile. An

estimate of the expected performance is calculated by

drawing at random with replacement 1000 reforecasts

initialized in the same month as the transition event of
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interest after first removing the transition from the

available population. From there, the 95% confidence

band of expected skill is taken by sorting the skill

metric, and taking the 25th and 975th values from the

random draws.

g. Fourier decomposition for sparse data

Wavenumber frequency spectra are calculated using

a two-dimensional Fourier decomposition in time and

space. Since the reforecast data are intermittently ini-

tialized, the Fourier decomposition in time is calculated

with respect to daily initialized data. This decompo-

sition is computed by creating a discrete Fourier

transform matrix containing coefficients for all daily

frequencies from

A
k
5 �

n21

n50

e2i2pnk/N k5 0, . . . ,n2 1, (5)

where N is the length of time, n is the irregular time

stepping of the model initialization dates, and k is the

daily time stepping. The Fourier decomposition in time

then follows as

F (A
k
)5 x � A

k
, (6)

where x is a matrix of the data with time going down the

rows and space across the columns. The ends of x are

tapered by a cosine bell to minimize spectral leakage.

The highest frequencies are distorted because of the

sparsity of the data and are not plotted. Tests on similar

data with imposed artificial gaps but with data available

FIG. 1. The regressed bias for Z200 (contoured) and NRAD TOA (shaded) is presented for

15–20-day reforecasts initialized in January (representative of DJF and all leads) in

(a) ECMWF, (b) NCEP, and (c) BoM. The Z200 contours start at 610m and are contoured

every 10m.
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for comparison without gaps show that intraseasonal

and lower frequencies are not distorted.

4. Seasonal cycle of bias

The seasonal cycle ofmodel bias varies with initialized

day of year, lead window, and model. For each of the

BoM, ECMWF, andNCEPmodels, the bias in Z200 and

NRAD TOA grows in amplitude with lead window,

while the bias patterns remain largely in phase across

lead windows for a given day of year. The exact bias

patterns themselves differ from model to model, but

there are some common overarching themes, especially

in Z200. The seasonal cycle of bias of ECMWF is dis-

cussed in section 4a, NCEP in section 4b, and BoM in

section 4c.

a. ECMWF

During the winter, the ECMWF Z200 bias is charac-

terized by anomalously high heights over the central

Pacific Ocean, eastern North America, the North At-

lantic Ocean, and northern Eurasia, with anomalously

low heights equatorward of 308N and over the west coast

of the United States (Fig. 1a). The anomalously low

heights in the tropics may be in response to a bias fa-

voring reduced convection globally, as evidenced by the

dry bias throughout much of the global tropics (Fig. 1a).

The dry bias in the global tropics may lead to a decrease

in wave activity across the extratropical waveguide,

allowing the model to quickly return to its internal cli-

mate. This effect is compounded by a weaker background

extratropical potential vorticity gradient, resulting in a

FIG. 2. The regressed bias for Z200 and NRAD TOA is presented for 15–20-day reforecasts

initialized in July (representative of JJA and all leads) in (a) ECMWF, (b) NCEP, and (c) BoM.

The Z200 contours start at 610m and are contoured every 10m.
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poleward-shifted extratropical Rossby waveguide and an

enhanced wave-breaking frequency.

The positive height bias in Z200 grows throughout the

Northern Hemisphere spring (not shown), leading to a

positive height bias between roughly 258 and 608Nacross

the globe, throughout the summer (Fig. 2a). The ex-

ception is overGreenland, where a weak negative height

anomaly bias exists in Z200 (Fig. 2a). The ECMWF

dataset used in this paper does not couple sea ice;

therefore, it may not be appropriately melting sea ice in

this region, which could explain some of this negative

height bias, although testing this hypothesis is beyond

the scope of this study. The tropics are characterized

by a negative height bias in Z200, although it is not as

uniform across the globe as in the winter (Fig. 2a). The

dry bias in NRAD TOA throughout the tropics exists

during the summer, except for over the Indian Ocean

and Maritime Continent, where a weak wet bias exists

(Fig. 2a). These patterns suggest that ECMWFhas a bias

favoring drought development in the central plains due

to less large-scale support for rainfall over the region at

longer lead times.

b. NCEP

NCEP has a similar summertime bias compared to

ECMWF in Z200, but a much different wintertime bias.

During the winter, NCEP has a cool bias in the Northern

Hemisphere (Fig. 1b). There are three main centers of

negative height biases, over the Pacific Ocean, over

Eurasia, and over the North Atlantic. It is unclear why

NCEP has such a strong negative height bias at Z200

during the winter, but the negative height bias would

have strong implications on winter Rossby wave char-

acteristics in the model and should be investigated fur-

ther in future work.

NCEP’s winter bias in NRAD TOA indicates sup-

pressed convection over the Maritime Continent, active

convection in the Indian Ocean, suppressed convection

in the equatorial Pacific north of the equator, and a

center of active convection south of the equator near

FIG. 3. The average anomaly correlation coefficient for 200-hPa geopotential heights duringMay–August (1995–

2013) averaged over 308–708N and 1358–458W. The solid line is the mean ACC for ECMWF (red), NCEP (blue),

and BoM (green), while the dashed line approximates the 95% confidence interval of the mean for the (a) total,

(b) low-frequency, (c) intraseasonal, and (d) synoptic fields.
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1358W (Fig. 1b). There does not appear to be a clear

pathway whereby these NRAD TOA biases could be

associated with the net cool bias in Z200. The Z200 bias

changes drastically in the summer, where much of the

globe from approximately 408 to 608N is characterized

by a positive Z200 height anomaly, with negative Z200

height anomalies poleward and equatorward (Fig. 2b).

NCEP’s Z200 bias favors positive heights over the cen-

tral United States, implying a bias toward drought dur-

ing the summer (Fig. 2b).

c. BoM

BoM has a much different seasonal cycle of bias

compared to ECMWF. During the winter, BoM has an

expansive wet bias from the equator to 208N and from

1358E to 1808 (Fig. 2c). This wet bias feeds a positive

Z200 bias on its poleward side via anomalous adiabatic

heating and the redistribution of potential vorticity by

the divergent wind (not shown). This results in a stron-

ger potential vorticity gradient and extended western

Pacific jet, substantially modulating the extratropical

waveguide. Farther downstream, there is a positive Z200

height bias over the western half of the United States,

centered over northern Mexico, and a negative Z200

height bias over the rest of North America (Fig. 2c).

There are interesting bias patterns in NRAD TOA over

South America and Africa, but discussing them in detail

is beyond the scope of this paper (Fig. 2c).

During the summer, the negative NRADTOA bias in

the tropical west Pacific strengthens, shifting poleward

and extending well beyond 1808 (Fig. 2c). This shift leads
to a poleward adjustment in the positive Z200 height

bias over the Pacific Ocean, tightening the geopotential

gradient across the Pacific (Fig. 2c). The strongest pos-

itive Z200 height bias across the Pacific Ocean occurs

near 458N, close to its location in ECMWF; however,

BoM has a negative Z200 bias across much of the globe

poleward of 608N. Farther downstream, the eastern ex-

tent of the Pacific Z200 ridge anomaly extends into the

west coast of the United States and into the Great Lakes

region, with a negative Z200 bias centered over Texas

(Fig. 2c). This circulation bias demonstrates that BoM

tends to favor anticyclonic wave breaking over the

United States. Overall, the Z200 bias suggests that

BoM may favor an enhanced frequency of drought

transition events over the region during the summer,

depending on where the wave tends to break over North

America. The positive Z200 bias from 408 to 608N is

FIG. 4. Composite mean verification 200-hPa geopotential height anomalies (contours) and OLR anomalies

(filled contours) for 20-day drought (left) decay and (right) onset events. The solid black line indicates 200-hPa

geopotential height anomalies that are statistically different from zero at the 95% confidence level. The Z200

contour intervals start at15m (red) and25m (blue) with an interval of 10m.OLRanomalies tend to be significant

at 62Wm22.
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similar to the ECMWF (Fig. 2a) and NCEP (Fig. 2b)

results, suggesting the possibility that errors may arise

from common internal forcing mechanisms (e.g., biases

associated with physical parameterizations) across all

three models.

5. Assessment of model performance during
May–August

Schiraldi and Roundy (2017) demonstrated low-

frequency, intraseasonal, and synoptic Z200 and NRAD

TOA circulation patterns associated with agricultural

drought (May–August 1979–2014), noting the largest

impacts on the transition periods came from the

intraseasonal band. Schiraldi and Roundy (2017) note the

amplification of an intraseasonal extratropical Rossby

wave that occurs coincident with westward-propagating

tropical convection, leading to a center of convection at

1358E on the transition day. This section diagnoses how

well these patterns are reforecast inNCEP, ECMWF, and

BoM at leads of up to 30 days. Section 5a provides context

for the expected model performance during May–August

1995–2013, while section 5b describes errors associated

with predicting transition events.

a. Climatological skill

The ACC results between the reforecast and verifi-

cation provide a demonstration of reforecast skill over a

FIG. 5. The average ACC difference between 200-hPa geopotential heights during May–August (1995–2013) averaged over 308–708N
and 1358–458W, and the ACC of the events over the same box. Positive values indicate the events have higher ACCs than the 95th

percentile confidence interval of climatology, where negative values indicate the events have lower ACCs than climatology. Tick marks

along the line indicate the difference is statistically significant at the 95% confidence level.
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given area. ACC is calculated for Z200 over North

America, from 308 to 708Nand from 1358 to 458Wfor the

total field and each filtered band. A mean ACC is then

calculated to approximate the model performance in

this region. The 95% confidence interval for Z200 ACC

is calculated by drawing randomly from initialization

dates throughout the period of interest, 1000 times with

replacement, sorting, and taking the 25th and 975th

values. During this period, ECMWF retains the highest

ACC throughout all leads, although NCEP ACC is

nearly identical through leads F000–F240 (Fig. 3a). BoM

exhibits the lowest ACC throughout the reforecast pe-

riod (Fig. 3a). Both ECMWF and NCEP drop below 0.2

by lead F360–F480, whereas BoM drops below 0.2 at

F240–F360 (Fig. 3a).

The ECMWF low-frequency reforecasts have the

highest ACC totals throughout all lead windows, drop-

ping below 0.2 after lead F480–F600, which is a full lead

window after the BoM and nearly a full lead window

after NCEP (Fig. 3b). NCEP and ECMWF ACCs are

however nearly identical through lead F240–F360, after

which they diverge (Fig. 3b). BoM low-frequency re-

forecasts remain a distant third throughout all lead

windows (Fig. 3b). For all three models, the low-

frequency reforecasts are more skillful than the total

field, but the degradation of low-frequency ACC demon-

strates the models’ struggled to persist the low-frequency

background conditions of the varying intraseasonal flow in

which the reforecasts occur.

The ACCs in the intraseasonal band are also slightly

higher than the total field (Fig. 3c). The ECMWF and

NCEP models have nearly identical ACCs in the intra-

seasonal band, diverging after lead F240–F360, while

BoM continues to have a lower ACC (Fig. 3c). Still, the

low intraseasonal ACC shows that all models struggle

with predicting intraseasonal variability. NCEP has the

highest ACC in the synoptic band through F240–F360,

although ECMWF is only about 0.10 lower, and the raw

scores are low overall (Fig. 3d). As expected, the syn-

optic band experiences the sharpest decrease in skill,

with ACC following below 0.2 in ECMWF and NCEP

just prior to F240–F360 (Fig. 3d).

b. Evaluation of model performance during
agricultural drought transition periods

Each of the model’s composite mean reforecast veri-

fication is slightly different (Fig. 4). These differences

arise from models having different initialization dates

throughout the study period. Overall, the composite

mean Z200 and NRAD TOA anomalies are in phase,

but the amplitudes of the anomalies are different for

both 20-day onset (Fig. 4, left) and 20-day decay events

(Fig. 4, right), as well as 60-day transition events, which

are roughly consistent with the 20-day transition events

(not shown). These differences are not statistically sig-

nificant and the patterns are consistent with those dis-

cussed by Schiraldi and Roundy (2017). To account for

these differences, errors discussed are computed from

each model’s respective verification. This section fo-

cuses primarily on leads of F360–F720 where the Z200

ACCs over North America are the lowest for all three

models in all three filtered bands (Fig. 3).

FIG. 6. Composite mean Z200 (contours) and NRAD TOA (filled contours) reforecasts for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue). OLR anomalies tend to be significant at 62Wm22.
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1) COMPARISON WITH HISTORICAL ERRORS

It is important to consider whether the ACCs associ-

ated with agricultural drought transition events over the

CBR are statistically different from climatology. As

such, ACC reference scores (ACC-RSs) are com-

puted with respect to the ACC of a randomly selected

distribution of dates during May–August (MJJA). Pos-

itive ACC-RSs indicate better reforecast performance

with respect to any given reforecast during MJJA, while

negative ACC-RSs represent poorer reforecast perfor-

mance. The ACC-RSs are considered different if the

95% confidence interval of the average ACCs over the

set of events falls outside of the 95% confidence interval

FIG. 7. Composite mean Z200 (contours) and NRAD TOA (filled contours) reforecast errors for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue), with an interval of 10m. OLR anomalies tend to be

significant at 62Wm22.

FIG. 8. Composite mean Z200 (contours) and NRAD TOA (filled contours) reforecasts errors in the intraseasonal band for

(a)–(c) ECMWF, (d)–(f) NCEP, and (g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue), with an interval of

10m. OLR anomalies tend to be significant at 62Wm22.
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of theACCs for climatology. This test is performedon the

total field and filtered fields separately to assess whether

differences in one band dominate differences in the total

ACC. After F240, when the difference in the unfiltered

field is significant for NCEP, the synoptic and intra-

seasonal differences tend to be significant (Figs. 5a,d,i,l),

with better performance than average in predicting

20- and 60-day drought decay events, at F360–F480.

ECMWF has lower ACC-RSs at F480–F600 during

20-day drought onset events, in the total and intraseasonal

fields (Figs. 5e,g), whereas BoM has higher ACC-RSs

predicting 60-day drought decay at F480–F600, with no

dominant contribution from either filtered field (Fig. 5i).

This analysis shows that enhanced or decaying ACC-

RSs at one lead window do not transfer to enhanced

ACC-RSs at lead windows closer to verification, and it is

difficult to use this analysis to assess whether one filtered

band is contributing most to these changes. To further

assess this question, composite mean reforecasts and er-

rors for each filtered band are used to assess the errors

associated with the patterns Schiraldi and Roundy (2017)

determined to have the largest influence on these tran-

sition periods.

2) 20-DAY AGRICULTURAL DROUGHT DECAY

Reforecasts of Z200 and NRAD TOA during 20-day

drought decay periods differ from model to model, but

there are some consistent themes. At F600–F720, the

ECMWF composite ensemble mean Z200 shows a

negative height anomaly over Alaska, with a positive

height anomaly centered over Texas (Fig. 6c). In addi-

tion, the enhanced convection at approximately 208N
extends from 1008 to approximately 1508E (Fig. 6c). This

convection builds a ridge on its poleward side through

the advection of potential vorticity by the divergent

wind, yielding an extended subtropical Pacific jet (not

shown), which is not consistent with the pattern evolu-

tion identified by Schiraldi and Roundy (2017). Further,

the convection is more expansive than the verification

(Fig. 4), and much of the amplitude of this convection

is seen in the synoptic band (not shown). During F480–

F600, ECMWF starts to decrease the intensity of the

FIG. 9. Time–longitude diagramdetailing the compositemeanNRADTOAreforecast (filled contours) for (a) ECMWF, (b)NCEP, and

(c) BoM and errors (contours). Positive errors (suppressed bias) are presented as solid lines starting at12Wm22 with a contour interval

of 2Wm22, where dashed contours indicate negative errors (active bias) starting at 22Wm22 with a contour interval of 22Wm22.

NRAD TOA values tend to be significant at 62Wm22.
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convection in this region. The large-scale circulation

pattern over the Pacific and North America during this

lead window is 1808 out of phase with the verification.

The error in the phase of the wave train can be linked to

an area of positive errors in NRAD TOA, near 1358W
from 08 to 308N (Fig. 7b).

A bias toward suppressed convection near 1358W from

08 to 308Nyields a negativeZ200 bias on its poleward side

and positive Z200 height bias farther poleward (Fig. 7b).

Much of the amplitude of the NRAD TOA error occurs

in the intraseasonal band suggesting that the intra-

seasonal propagation of the region of convection is not

being accurately reforecast (Fig. 8b). A time–longitude

diagram of NRAD TOA averaged from 158 to 308N
shows the dry bias near 1358W in ECMWF (Fig. 9a) at

leads after F360. Sensitivity testing in themodel would be

FIG. 11. CompositemeanZ200 (contours) andNRADTOA (filled contours) reforecasts errors for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue), with an interval of 10m. OLR anomalies tend to be

significant at 62Wm22.

FIG. 10. Composite mean Z200 (contours) and NRAD TOA (filled contours) reforecasts for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue). OLR anomalies tend to be significant at 62Wm22.
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required to demonstrate the source of the dry bias and

whether it is driving errors in the extratropical circulation

or is a result of errors in that circulation. Such testing is

beyond the scope of this study. NCEP and BoM have a

similar dry bias near 1358E (Figs. 9b,c), but their Z200

circulation patterns are different (Figs. 6d–i).

NCEP reforecasts of 20-day drought decay events are

generally consistent across lead windows F360–F720.

These lead windows are characterized by a statistically

significant negative Z200 anomaly centered near 508N,

1808, with a positive Z200 anomaly on its equatorward

and poleward sides (Figs. 6d–f). The signal is not very

clear in the composite Z200 reforecasts over North

America, indicating large event-to-event differences

and no obvious Z200 bias associated with these events

(Figs. 6d–f). There are however significant errors in the

verifying wave train over the United States (Figs. 7d–f).

There are significant biases in NRAD TOA, especially

near 1358E, where the convection is largely suppressed

in all three lead windows (Figs. 7d–f). Like ECMWF,

much of the amplitude of these errors is accounted for

by errors in the intraseasonal field (Figs. 8d–f). Unlike

ECMWF, the dry bias in NCEP persists fromF120–F240

through F720, which may be linked to poor skill at ear-

lier leads compared to ECMWF (Fig. 9b). At F120–

F240, the intraseasonal extratropical Rossby wave is out

of phase with the verification, which may also be linked

to this dry bias (not shown).

The BoM Z200 reforecast is also relatively consistent

through leads F360–F720, yielding a negative Z200

height anomaly from 408 to 608N across the globe, with

positive Z200 anomalies on its poleward and equator-

ward sides (Figs. 6g–i). BoM has a dry bias in NRAD

TOA near 1358E in the tropics, but it is characterized

by a more pronounced wet bias east and west of 1358E
(Fig. 9c). It is difficult to determine what is driving the

extratropical circulation in BoM, and the results suggest

the need for sensitivity testing in the model.

3) 20-DAY AGRICULTURAL DROUGHT ONSET

During 20-day agricultural drought decay events,

intraseasonal NRAD TOA and Z200 patterns associ-

ated with 20-day agricultural onset events are not well

predicted by any model. ECMWF predicts a positive

FIG. 12. Time–longitude diagram detailing the composite mean NRAD TOA reforecast (filled contours) for (a) ECMWF, (b) NCEP,

and (c) BoM and errors (contours). Positive errors (suppressed bias) are presented as solid lines starting at 12Wm22 with a contour

interval of 2Wm22, where dashed contours indicate negative errors (active bias) starting at 22Wm22 with a contour interval

of 22Wm22. NRAD TOA values tend to be significant at 62Wm22.
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Z200 anomaly over the Rocky Mountains with negative

height anomalies downstream centered over the north-

eastern United States, and upstream centered over

Alaska at F600–F720 (Fig. 10c). The large-scale pattern

is generally representative of the extratropical Rossby

wave state over North America during 20-day drought

onset events (Fig. 3a). While Z200 has relatively low

errors over the United States (Fig. 11c), the large-scale

pattern does not progress through to shorter lead times

(Figs. 10a,b), leading to higher errors at leads F360–F600

(Figs. 11a,b). Opposite to the 20-day agricultural decay

events, ECMWF now has a relative wet bias near 1358E
during lead F240–F600 (Figs. 11a–c). NCEP has no clear

favored Z200 reforecast state, and BoM persists a cir-

cumglobal trough between 408 and 608N (Figs. 10d–i).

Like ECMWF, NCEP and BoM show a general wet bias

near 1358E, which may play some role in the errors as-

sociated with these events (Fig. 12). Much of the

FIG. 14. CompositemeanZ200 (contours) andNRADTOA (filled contours) reforecasts errors for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue), with an interval of 10m. OLR anomalies tend to be

significant at 62Wm22

FIG. 13. Composite mean Z200 (contours) and NRAD TOA (filled contours) reforecasts for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue). OLR anomalies tend to be significant at 62Wm22.
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amplitude of the errors in all three models is accounted

for in the intraseasonal field (not shown).

4) 60-DAY AGRICULTURAL DROUGHT DECAY

ECMWF and NCEP do a much better job at pre-

dicting the large-scale Z200 pattern associated with

60-day agricultural drought decay transitions compared

to 20-day transitions. At lead F600–F720, ECMWF ac-

curately positions a negative Z200 anomaly overAlaska,

but does not correctly phase the wave train over the

United States (Fig. 13c). The negative Z200 anomaly

over Alaska is shifted slightly poleward, and its zonal

extent is wider than that of the verification (not shown).

Eighty percent of the amplitude of this negative height

anomaly is explained by the intraseasonal band (not

shown). NCEP reforecasts a negative 200-hPa anomaly

in a similar region, and phases the wave correctly over

North America, although only the ridge over the eastern

half of the United States is statistically significant

(Fig. 13f), implying reduced consistency across its en-

semble. Similar to ECMWF, much of the amplitude of

this signal is accounted for in the intraseasonal band (not

shown). Like 20-day decay cases, BoM Z200 reforecasts

continue to persist a circumglobal trough poleward of

308N during 60-day drought decay (Fig. 13i). ECMWF,

NCEP, and BoM continue to have a bias in NRAD

TOA toward suppressed convection at 1358E, from 158
to 308N (Figs. 14c,f,i), with much of the amplitude of

these errors accounted for by the intraseasonal band

(not shown).

At F480–F600, ECMWF shifts the position of the

negative Z200 anomaly over Alaska slightly east

(Fig. 13b). ECMWF also builds positive Z200 anomalies

over the central United States, which dynamically sup-

ports suppressed rainfall over the CBR and continued

drought conditions (Fig. 13b). NCEP, however, main-

tains the negative Z200 anomalies over Alaska in the

same region during F480–F600, with positive Z200

anomalies in the Gulf of Alaska, and negative Z200

anomalies over the western half of the United States

(Fig. 13e). Thus, NCEP correctly suggests a transition

away from drought at lead F480–F600. NCEP correctly

FIG. 15. Time–longitude diagram detailing the composite mean NRAD TOA reforecast (filled contours) for (a) ECMWF, (b) NCEP,

and (c) BoM and errors (contours). Positive errors (suppressed bias) are presented as solid lines starting at 12Wm22 with a contour

interval of 2Wm22, where dashed contours indicate negative errors (active bias) starting at 22Wm22 with a contour interval

of 22Wm22. NRAD TOA values tend to be significant at 62Wm22.
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phases the extratropical Rossby wave, despite having a

dry bias near 1358E in the tropics. Further, much of the

extratropical Rossby wave amplitude is in the intra-

seasonal band (not shown). At F480–F600, BoM refor-

ecasts do not materially change.

By F360–F480, ECMWF and NCEP are consistent

with the large-scale Z200 pattern governing the transi-

tion. ECMWF shifts the negative Z200 anomaly over

Alaska to the west (Fig. 13a). ECMWF also builds a

trough over the central plains and a ridge over the

southeastern United States (Fig. 13a). While there are

still substantial errors with this reforecast (Fig. 14a), in

general, the results agree with patterns associated with a

shift away from drought over the CBR. ECMWF accu-

rately predicts convection near 1358E in the tropics

(Fig. 15a), which appears to play a role in organizing the

extratropical Rossby wave train over the United States.

TheNCEPF360–F480Z200 circulation pattern does not

change substantially from the F480–F600 reforecast

over the Pacific (Fig. 13d), and continues to reforecast a

pattern that supports a transition away from drought

over the CBR. Unlike ECMWF, NCEP continues to

have a dry bias near 1358E in the tropics at this lead

(Fig. 15b). Once again, the BoM reforecast does not

change much during this lead (Fig. 13g).

5) 60-DAY AGRICULTURAL DROUGHT ONSET

ECMWF and NCEP also have lower reforecast errors

associated with 60-day agricultural drought onset, rela-

tive to 20-day agricultural drought onset. At F600–F720,

ECMWF accurately predicts negative Z200 anomalies

over Alaska, although the composite reforecast does not

have a clear signal over the United States (Fig. 16c). At

this lead, NCEP places negative Z200 anomalies in a

similar region, but it too does not predict a coherent

pattern over the United States (Fig. 16f). At F480–F600,

ECMWF establishes largely zonal flow across the

United States and Gulf of Alaska, shifting the negative

Z200 anomalies west and east, with a minimum over the

Bering Strait, and another over northern Canada

(Fig. 16b). At F480–F600, NCEP features a positive

Z200 anomaly over the central Pacific and another south

of Greenland (Fig. 16e). Neither of these features is

linked to the circulation anomalies identified by

Schiraldi and Roundy (2017). At F360–F480, ECMWF

has the correct phase of an extratropical Rossby wave

extending from the Pacific to the Atlantic. That is, it

reforecasts negative Z200 anomalies over Alaska, posi-

tive Z200 anomalies (although they are not statistically

significant) over the western half of the United States,

and a trough over the eastern half of the United States.

The largest difference in this reforecast from the other

leads is in the tropics, where there is a region of sup-

pressed convection near 1358E between 158 and 308N
(Fig. 17a). The ECMWF reforecast at F360–F480, is

much better than that of NCEP. NCEP features an ex-

pansive area of negative NRAD TOA anomalies from

908E to 1808 (Fig. 17b), and an incorrectly phased wave

train over the United States (Fig. 16c). The zonal flow

over the United States implied by NCEP would

FIG. 16. Composite mean Z200 (contours) and NRAD TOA (filled contours) reforecasts for (a)–(c) ECMWF, (d)–(f) NCEP, and

(g)–(i) BoM. The Z200 contour intervals start at 15m (red) and 25m (blue), with increments every 10m. OLR anomalies tend to be

significant at 62Wm22.
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dynamically favor suppressed rainfall over the region.

Throughout the reforecast horizon, BoM is similar to

the other transition events, reforecasting circumglobal

positive Z200 anomalies in the tropics and negative

Z200 anomalies in the extratropics (Figs. 16g–i).

6. Reforecast model wave characteristics

It is apparent that ECMWF,NCEP, andBoM struggle

fundamentally with predicting the circulation patterns

(both NRAD TOA and Z200) associated with 20- and

60-day agricultural drought transition periods. It re-

mains difficult to assess whether this is due to funda-

mental flaws in the model physics or just a lack of

predictability of such events, without careful model

sensitivity testing. Spectrum analysis of reforecast data

comparedwith similar spectra generated from theERA-I

may provide insights into biases in model variability

that might explain some of the reforecast errors. This

section discusses biases in the wavenumber frequency

domain from 308 to 608N in Z200 and from 08 to 308N in

NRAD TOA. The wavenumber frequency spectra are

calculated by applying Eq. (6) in time, and a conven-

tional Fourier decomposition in space. This calculation

is repeated on the ERA-I Z200 and satellite OLR fields,

with imposed irregular time stepping equivalent to the

models’ initialization frequency and in the model re-

forecast fields at F360–F480, for target dates in May

throughAugust, in each ensemblemember. The average

of the spectra of individual ensemble members is pre-

sented. The difference between the ERA-I Z200, sat-

ellite OLR, and reforecast spectra are presented for

NRAD TOA in section 6a and Z200 in section 6b.

a. NRAD TOA

Throughout the target study period, NCEP, ECMWF,

and BoM show large differences in spectral power be-

tween the reforecast and analyzed OLR results. The

largest differences in ECMWF occur in westward-

propagating waves, from wavenumbers 5 to 15 and for

periods greater than 15 days, where ECMWF exhibits

more power than the satellite OLR (Fig. 18a). Outside of

those bands, ECMWF has less power relative to the sat-

ellite OLR data. ECMWF exhibits a decrease in power in

FIG. 17. Time–longitude diagram detailing the composite mean NRAD TOA reforecast (filled contours) for (a) ECMWF, (b) NCEP,

and (c) BoM and errors (contours). Positive errors (suppressed bias) are presented as solid lines starting at 12Wm22 with a contour

interval of 2Wm22, where dashed contours indicate negative errors (active bias) starting at 22Wm22 with a contour interval

of 22Wm22. NRAD TOA values tend to be significant at 62Wm22.
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westward-propagating waves with periods of 5–10 days

between wavenumbers 6 and 15 (Fig. 18a). To the extent

that tropical waves in this spectral band play a role in

agricultural drought transition periods, the decrease in

frequency of these waves in the reforecast may be linked

to poor model performance during these events.

NCEP’s spectral differences occur at different peaks

than ECMWF. Overall, NCEP is subject to more power

in eastward-propagating waves. NCEP has considerably

more power in the spectral band containing wave-

numbers 0–5 and periods of from 6 to 30 days (Fig. 18b).

Kelvin waves are often characterized by this spectral

band (Wheeler and Kiladis 1999), as are extratropical

Rossby waves advected eastward on westerly winds. The

average latitudinal variance associated with NRAD

TOA in this spectral band was plotted to establish that

the variance was concentrated equatorward of 158N,

confirming that this increase in power is likely associated

with Kelvin waves as opposed to an extratropical sig-

nature. NCEP has a decrease in power in westward-

propagating wavenumbers 2–5 for periods from 7 to

15 days (Fig. 18a).

FIG. 18. The F360–F480 difference in wave spectra from reanalysis for NRAD TOA aver-

aged from 08 to 308N for (a) ECMWF, (b) NCEP, and (c) BoM. Differences tend to be

significant at 60.5.
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BoM has the most unique difference from the ana-

lyzed OLR of any of the three models. BoM tends to

have more power in high wavenumbers and during low-

frequency periods, as well as for low wavenumbers and

all periods. Outside of those bands, BoM has less power

relative to the satellite OLR data.

b. Z200

Shifts in ECMWF Z200 power spectra averaged from

308 to 608N at F360–F480 reveal reduced eastward-

propagating waves from zonal wavenumbers 5–15 and

periods of from 6 to 30 days (Fig. 19a). This result

suggests that ECMWF does not produce enough syn-

optic and intraseasonal variability in the extratropical

waveguide. The extratropical wave train associated with

agricultural drought transition periods is contained in

this spectral band, and thus a decrease in variability in

this band could be related to a decrease in reforecast

performance. NCEP too shows a decrease in power in a

similar band, although it is constrained to wavenumbers

10–15 and periods of from 6 to 15 days (Fig. 19b). This

reduced power suggests that the model does not suffi-

ciently simulate synoptic variability, which is consider-

ably less important than intraseasonal variability to

FIG. 19. The F360–F480 difference in wave spectra from reanalysis for Z200 averaged from 308
to 608N for (a) ECMWF, (b) NCEP, and (c) BoM. Differences tend to be significant at 60.5.
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these transition events. NCEP has much more power in

westward-propagating waves of nearly all frequencies

and wavenumbers, which would be interesting to look at

in future work (Fig. 19b). Again, BoM tends to have

more power in high wavenumbers and during low-

frequency periods as well as for low wavenumbers and

synoptic periods. Outside of those bands, BoM has less

power than in analysis fields.

7. Discussion

The seasonal cycle of bias associated with ECMWF,

BoM, and NCEP reveals that biased circulation pat-

terns in Z200 and NRAD TOA are likely tied to each

model’s ability to predict agricultural drought transi-

tion periods. Each model tends to revert to its clima-

tological state over North America in as little as three

weeks, as demonstrated by a sharp drop in ACCs for

the low-frequency band (Fig. 3b). Since the ACCs

presented in this paper are computed on bias-corrected

fields, bias correction alone is not sufficient. Results

show that errors in the prediction of Z200 over North

America during agricultural drought transition periods,

on average, are no different than the historical error

during the target study period. During MJJA, ECMWF

and NCEP show similar skill in predicting Z200 heights

over North America, with ACCs falling below 0.2 by

lead F360–F480, and BoM results falling below 0.2 at

F240–F360.

There is an increase of 0.15 in ACC compared to cli-

matology at lead F360–F480 in NCEP during 20-day

drought decay events and an increase of 0.25 during

60-day drought decay events. This increase in ACC is due

to improvements in predicting the intraseasonal and syn-

optic bands. This result demonstrates that to improve the

prediction of transition events, the numerical weather

prediction community must improve the prediction of a

broad basis of weather phenomena. It is likely that im-

provements in the low-frequency and intraseasonal bands

will contribute to achieving better reforecasts, as most of

the amplitude of the Z200 and NRAD TOA errors are

contained in the intraseasonal band.

Our results demonstrate that while ECMWF has

higher ACCs in Z200 over NorthAmerica through leads

F240–F360 in the total and filtered fields compared to

NCEP and BoM, ECMWF does not show better skill in

leads thereafter during May–August. Overall, Z200 and

NRAD TOA have generally lower errors for 60-day

agricultural drought onset and decay at lead F360–F480

in ECMWF and NCEP. Thus, during these types of

drought onset or decay events, ECMWF andNCEPmay

be useful operationally in assessing when such agricul-

tural drought transitions might occur.
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